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A New Stacked Two-Dimensional Spectral
Iterative Technique ( SIT ) for Analyzing
Microwave Power Deposition in
Biological Media

RAPHAEL KASTNER, MEMBER, IEEE AND RAJ MITTRA, FELLOW, IEEE

Abstract — Conventional numerical methods for analyzing power deposi-
tion in biological media have been restricted to bodies which are relatively
small electrically. A new, stacked-two-dimensional-spectral-iterative-tech-
nique (SIT), presented below, does not involve the generation and inver-
sion of a matrix and is capable of analyzing larger bodies. It is based on
modeling the body by a set of planar parallel slabs and utilizing the simple
(convolution-type) relationship between a current distribution on any slab
and the field due to this current. This invertible relationship is conveniently
formulated in the transform domain in a strictly algebraic fashion. The
interactions between the various slabs are also simple and algebraic in the
spectral domain. The solution is generated in an iterative manner by
applying these relationships sequentially over the slabs until convergence is
achieved. Discussion on convergence and numerical examples are given.

I. INTRODUCTION

NTEREST IN HYPERTHERMIA, or electromagnetic

heating of deep-seated tumors [1]-[3], and in the assess-
ment of possible health hazards produced by EM radiation
have prompted the development of analytical and numeri-
cal techniques for evaluating the electromagnetic power
deposition in the interior of biological media. To date,
conventional approaches to theoretical electromagnetic
dosimetry [4] have involved the use of numerical matrix
methods [5]-[14] for the low-frequency range. These meth-
ods are limited to the frequency region below 600 MHz.
Beyond this frequency, the cost of generating, storing, and
inverting a large matrix becomes prohibitively large. For
the higher frequency range, analytical analysis has been
used for certain separable geometries, such as planar (e.g.,
[15]), spherical [16], [17], cylindrical [18], and prolate
spheroidal [19]. Farther on the frequency scale, the geomet-
rical-optics approximation has been utilized [18], [20].
However, no systematic numerical approach has been
available beyond the low-frequency range. The need for a
method that is capable of handling, for example, the im-
portant ISM frequencies of 915 or 2450 MHz, has long
been recognized.
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This paper presents a new method, viz., the
stacked-two-dimensional-spectral-iterative-technique (SIT),
which is unrelated to the approaches mentioned above. It is
based on the two-dimensional Fourier transform technique
and has been applied previously to electromagnetic scatter-
ing from arbitrary, metallic, or dielectric bodies. The
method takes advantage of the simplicity with which the
relationship between planar sources and fields is expressed
in the spectral domain. When the field is evaluated on a
plane next to a thin planar current distribution lying, say,
in the x— y plane, the integral relating the current to the
field is a convolution between the current and the Green’s
function. Hence, the relationship between the spectral cur-
rent and the spectral field involves an algebraic multiplica-
tion of the current by the spectral Green’s dyad. That is, in
the spectral domain, we write

E(kyky)= G -J(kok,). 1)

The quantities d, and k, in (1) are the Fourier transform
variables introduced as follows:

E(k,k,)=[

o]

E(s,9,0)e/ "5 dx dy.
o0

)

One very efficient approach for solving the class of
planar problems is the spectral-iteration technique [24]-
[26] which involves no matrix inversion, and is related to
Bojarski’s 3-D k-space method [27] (for a detailed compari-
son, see [23]). This technique can be extended to include
dielectric planar bodies (see Section II below). It then
serves as a building block for the arbitrary scattering
problem that can be formulated by modeling the current
distribution by a set of parallel planar current distributions
(see Fig. 1). This stacked 2-D modeling makes it possible to
extend the capabilities of the spectral-domain approach to
arbitrarily shaped, perfectly conducting, or (lossy) dielec-
tric scatterers. The stacked spectral iteration technique
repeatedly applies the two-dimensional Fourier transform
algorithm to the set of planar distributions and generates
the solution to the original three-dimensional problem in
an iterative manner. A unique feature of the SIT is that it
reuses the storage allocated for a single plane over and over
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" Fig. 1. Planar current samples on a two-dimensional scatterer.

again as it performs the computation at other planes. This
eases the burden on storage requirements considerably.

Computational efficiency and low storage requirements
make the spectral-iteration method capable of handling a
rather large number of unknowns, on the order of 2000 or
more, far beyond the reach of the matrix methods. This
feature of the spectral technique enables one to attack
moderate-to-large size scatterers, which were previously
considered to be unmanageably large and beyond the
scope of the moment method (matrix method) and other
available techniques.

SIT thus provides an alternative to moment methods,
high-frequency asymptotic techniques, and their combina-
tions, especially in the intermediate frequency range where
conventional methods are very limited in scope.

The extension of the procedure developed for planar
conducting [24] to planar dielectric structures is discussed
in Section II. This forms the building block for the SIT for
arbitrary dielectric bodies, given in Section III. Results are
described in Section IV.

II. THE BUILDING BLocCK FOR SIT: THE SINGLE
PLATE

The SIT for general scatterers may be viewed as a
generalization of the two-dimensional scheme [24] for the
single thin plate. (See Fig. 2.) This scheme is now refor-
mulated to accommodate dielectric thin planar slabs as
well. To this end, we use the polarization current

J = joeo(e, —1)(E + E™)

as the current source for the free-space wave equation.

Equation (3) serves as the “constitutive relationship”
which plays an analogous role to the boundary condition
in the conducting case. Equation (3) is algebraic in the
spatial domain, whereas (1) is algebraic in the spectral
domain. An iterative procedure for solving this system of
equations alternates between the two domains by use of the
FFT algorithm, It is depicted graphically in Fig. 3 and in
the following step-by-step outline.

1) Begin with an initial guess J©

2) Take the 2-D Fourier transform of J© on the planar
structure to obtain J©.

3) Multiply J© by G..

()
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Fig. 2. The isolated plate.
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Fig. 3. The two-dimensional iterative scheme for a dielectric planar
scatterer.
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4) Evaluate E@=F"'[G -J©], the approximation to
the scattered electric field E. The accuracy of the solution
can be conveniently checked at this point by verifying the
satisfaction of the constitutive relationship (3) within the
scatterer. This is an important feature of the method.

5) Update E by applying the following constitutive rela-
tionship: Replace E, within the body, §E, (8 = truncation
operator; it is defined by # =1 on scatterer and =0
outside scatterer) by 6(— E/)+ J/jwey(e, — 1), leaving the
field outside the body unchanged.

6) Take the Fourier transform of the updated field
obtained in Step 5. I

7) Multiply the result obtained in Step 6 by G, . The
result thus obtained is JO, which is the transform of the
first iteration of the current.

8) Take the inverse Fourier transform of J obtained in
Step 7 to get the surface current on the body. In other
words, perform the operation 6(F [J®]). For an exact
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solution, the truncation is redundant, since J= 8/, and,
hence, 0(F Y F[8J])=66J =J. However, the Fourier
inversion of an n™ approximate solution J will not give
rise to a current distribution that is nonzero, except on the
body. This step provides a test for the accuracy and for the
convergence of the approximate solution by comparing the
approximate J @ with 8(F 1[J®]).

9) Repeat as necessary using the improved J® obtained
from Step 8 into Step 1 to generate the next higher order
approximation J® and continue in this manner until con-
vergence has been attained.

The 2-D spectral dyadic Green’s function,
tioned in steps 3 and 7 above, is defined by

G , men-
e

B¢ % @
Ey —e Jy

since, for the isolated plate, only the transversal current
components J, and J, are present. It is given by

N
j k kg

kky, (K )2
k¢ ko

k}=kZ+k:.

(5)

where
(6)

In practice, the question of selecting an appropriate
sampling rate should be addressed. It has been found (see
[21]) that a low sampling rate results in loss of high-order
mode information, and hence in smoothing of sharp varia-
tions. If such localized errors can be tolerated, a low
sampling rate of A /4 to A/2 (in the medium) may be
employed in order to bring the total number of samples to
manageable levels.

This scheme is extended in the next section to three-di-
mensional bodies, while retaining the two-dimensional
processing for the sake of computational economy and
versatility.

1.

The approach to handling the general-shaped body is to
sample the induced current on it by a collection of » planar
distributions in free space, as shown in Fig. 1. The single-
plane scheme of Section II can be used to solve the original
problem which is now reduced to that of determining the
two-dimensional currents on n planar surfaces, separated
by a distance A.

The strategy for attacking the reduced problem is as
follows. We employ the basic iterative scheme outlined in
Section II for planar structures to update the individual
planar distributions in a sequential manner, starting with
the first plane and ending up at the last one. We update the
currents in one particular plane by applying a single itera-
tion cycle as in Fig. 3, while regarding the distributions in
the other planes as temporarily known from previous oper-
ations. This sequential processing facilitates the reuse of

ARBITRARY (L0sSY) DIELECTRIC BODIES
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Fig. 4. Sliced scatterer with the planes p_ and p, shown immediately to
the left and right of J,,, respectively.

the same storage area for all the linear currents. This
significantly reduces the burden on the computer memory
and cost as compared to the direct solution of a three-di-
mensional problem carried out in one fell swoop. The
iteration process encompassing all the planes is repeated as
many times as necessary until convergence of the entire
current distribution is achieved.

The enforcement of the constitutive relationship (3)
within the body requires the computation of the scattered
field produced by all of the planar-induced current distri-
butions. This is done as follows.

Assume that the plane at which the scattered field is
being evaluated is p,, immediately to the right of the
current slice J, (Fig. 4). It is evident that the sources J;
through J, lie to the left of this plane, while J, . ; through J,
are on the right of p,. Consider first the left sources,
the fields from which propagate to the right (+ z) direc-
tion; hence, their spectrum has the z-dependence
exp[ — jz\k§ — k2] Let us denote this part of the field by
EI(,:) where the superscript indicates that the currents gener-
ating this field are on the left of the plane of evaluation

(7)

14
FO =G - F o=k —kE-(p—1)A
E)=G AT Jeni o
where Ge has been defined in (4) and (5).
Similarly E(Y), the aggregate of fields radiated by the
sources on the right of the plane p_, may be written in the
transform domain as
n
F(H = £ 7ok — ki (p—nA
E}(:)_ge.A Y Jeko—kipmna
- 1=p+1

(8)

The total transformed field at the plane p, is then a
superposition of ES and E(P.

The separate bookkeeping of the two components E
and E is necessary to facilitate transformation of the
field between planes so that the sequential processing can
be done. Suppose, for example, that the field at the plane
( p +1)_is desired. Since the region between the planes p
and p +1_ is free space, the following equations are valid:

EG)y = BDemkimkid (9a)
E) = Ee ke kid, (9b)
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Next, in order to transform the field from the plane
(p+1)_ to (p+1),, we note that these two adjacent
planes are located on each side of the thin current distribu-
tion J, ;. Consequently, we subtract the contribution of J,
from E and add this contribution to EC. This gives

E((;11)+=_~((;11)_+ G "7(p+l)A (103)
~((p+1)+ E )23 ) Ee Jp+1)A (10b)

The above equations are consistent with the requirement
that the total field be continuous across the plane.

A typical updating cycle at the plane p is done similarly
to that for the single-plate case, by computing the total
scattered field by the superposition of E¢? and E(". One
can now take the inverse transform of this scattered field
due to the induced sources and enforce the constitutive
relationship which may be expressed as

_ J(x,y \
B+ B =~ Bt — R
Jjoeg e, (x, y)—1]

me

-+

(11)

We replace the scattered field values inside the body with
those dictated by the constitutive relationship while leaving
the scattered field outside the body unchanged. A Fourier
transform of the updated total field is then taken. We then
note that £(* is the field produced by currents located to
the right of p,. These currents are assumed to be tempo-
rarily known, hence, £$* is not changed during this cycle.
E(, on the other hand, depends on J; through J J, and is
updated This is accomplished as follows:

— EH

() =
E E =P+ "

—P+ —P+

(12)

The current J, itself is next updated using a relationship
analogous to Step 7 in the single plate case above

=Ee‘1 (ED-EO)AL,

=P+ —pP

(13)

Ef,j) in the above equation is the contribution of the
currents J; through J, ; which are also assumed to be
temporarily known from the previous cycle.

The process of updating the current on plane p is now
complete. We transform the updated field to plane p +1 by
using (9a) and (10a), and repeat the entire process for that
plane. We then continue in this manner until the entire
body has been scanned once. This constitutes one iteration
step. The entire scanning process is then repeated until
convergence is achieved and the results of the constitutive
relationship test have been found to be satisfactory.

1V. CoONVERGENCE ENHANCEMENT

Numerical experiments with the procedure described
above indicate that convergence is affected by the size of
the body, or by the total number of sampling points.
Convergence becomes difficult when the number is of the
order of one thousand or more. However, it is possible to
improve the convergence, even for the otherwise divergent
cases, which can often be made to converge by using
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certain iteration algorithms. This point is further elaborated
on below.

A. A Good Initial Guess

Many problems may be solved with an initial guess of
zero currents within the body. However, convergence can
be considerably enhanced if a good approximation for the
current is used instead. Such an approximation may be
derived by noting that the high losses in the living tissues
make them appear somewhat similar to conducting media.
A physical optics approximation can then be written down,
ie., J@=2nX H™ on the illuminated faces of the body,
and J = 0 elsewhere. Such an approximation has proven to
be a good starting point for the iterative procedure. Any
additional information derived, say, from ray optics, may
be useful. However, once the convergence rate becomes
reasonable, the price of a few more iterations may not be
too large compared to the effort involved in developing a
more elaborate initial guess.

B. Relaxation Factor

It has been found that often the values of currents and
fields tend to oscillate about the final value, and sometimes
even diverge after a number of iterations. A remedy for
smoothing the oscillations is to average the new, updated
value of the current with the previous approximation. A
relaxation factor « is defined as the amount by which the
new current is weighted, relative to the previous one. That
is, rather than using J, one takes aJ ™ +(1~ a)J D as
the updated version of the current. Relaxation factors of as
low as 20 percent or, sometimes, 10 percent may be needed.

C. Modified Scanning ’

The procedure described in the preceding section in-
volves the updating of planar currents in a sequential
manner, where a single updating cycle is performed for
each plane in turn. This method of scanning the planes
may be modified so that repeated updating of a single
plane, or of a group of adjacent planes, may ease conver-
gence problems. This is due to the fact that the inaccu-
racies in the iterated current values tend to generate large
amounts of noise as the fields are propagated over many
planes and when many high-order harmonics are used.
This is especially significant for the back planes, where the
fields are usually low, owing to the high attenuation in the
lossy tissue. The contribution of these planes may become
unproportionally large, as may be manifested by a very
distorted E¢7 at the front planes. Hence, keeping the
values of E(7 temporarily constant while the front planes
are being processed may slow down the noise-generating
mechanism.

D. Scaling Factor

It has been found that often the main difference between
the approximate current derived after a few iterations and
the exact solution is a complex factor. One can partly
compensate for this difference by multiplying the current
at the plane p at every iteration by the variational factor X,
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Fig. Sa. Comparison of SIT results with the exact solution for a layered
tissue structure at 915 MHz.

where
_](n)7 F
X s 09
(5" L")
and F is the total incident field on plane p

= g (+) inc
F=ED+ BN+ E™.

(15)

L is the operator defined so that (1) and (3) can be
integrated into the form LJ = F

J *

T Janle o) TE 19
The scaling factor X is defined in a similar fashion to the
one used in [25] and [26], except here the incident field on
the plane, F, is not completely known as before, but rather
assumed temporarily known, being the outcome of both
the incident field and the currents on other planes which
are assumed known as long as plane p is being processed.
The scaling factor has proved very useful in improving

convergence in difficult cases.

V. RESULTS
A. Layered Medium

The simple case of two infinite planar layers, one of
which is constituted of fat and the other of muscle, has
been used for an initial check on the capabilities of the
SIT. For this case, the solution is known. Figs. 5(a) and (b)
show the results for the ISM frequencies of 915 and 2450
MHz, respectively, compared to an exact solution derived
by plane-wave multiple reflection analysis. The electrical
properties of fat and muscle at the relevant frequencies
have been taken from [28]. It should be emphasized that
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Comparison of SIT results with the exact solution for a layered
tissue structure at 2450 MHz.

Fig. 5b.

the SIT scheme treats the structure from a general point of
view and does not take advantage of this specific shape.
Note that the field in the muscle layer is much weaker than
the one in the fat. The small inaccuracies in the field values
within the muscle become more pronounced as the power
is computed, owing to the much larger conductivity in the
muscle.

B. Cylindrical Structures

When the structure lacks variation in one transversal
direction, e.g., d/dx=0, ie, k,=0, and the incident
electric field is polarized along that direction, the problem
reduces to a scalar one where E, or J, are related by the
scalar Green’s function

G, = jop

i
—_— 17
2ykg - ky2 an

In analogy to the three-dimensional case, the two-dimen-
sional problem is now analyzed by a stack of one-dimen-
sional distributions on the cylindrical cross section. This
formulation is considerably more economical than the
three-dimensional one; hence, it may be useful for struc-
tures that are long and approximately uniform, particularly
in regions away from the edges.

The generality and versatility of the SIT is demonstrated
by the problem treated in Fig. 6, where a cylinder consist-
ing of muscle is subjected to plane-wave illumination. An
equivalent solution by matrix method would have required
an inversion of a matrix of about 600 X 600.
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Fig. 6. Power deposition in a cross section of a cylindrical muscle
structure with dimensions 62.6 cm X 62.6 cm at 915 MHz. The incident
electric field is x-polarized.
C. Three-Dimensional Case x{ PLANE #1 xl PLANE #2
. 08! 088 106 101 088 095 d 053 056 085
Finally, a complete 3-D structure has been analyzed, as [ I
shown in Fig. 7, where a thin-muscle box, modeled by two { @ 2 ap 2 fw oos 0go ogs  opr oz
planes, is illuminated by an x-polarized plane wave propa- i !
. . . . ne 4 0O 473 603 453 51 136 092 oSl o]:1:3 250
gating perpendicularly to the planes. Since for any given ¢ ] ‘ A { coor
s . . |
incident field all three components of the current may be *'. B P T S R
present, the problem is even more complicated. In order to . i
simplify the solution, cross-polarization effects have been —A—LP°—£6L—&°5—~—’95——JJ‘Lo—;——*ﬂiﬂ’———"im"ﬂ———lw—ﬁy
. - - . - a
neglected, i.e., for an incident field polarized along the |

x-direction, the only current component assumed to be
present is J.. The scalar Green’s function is the Geu of (5).

A similar structure was analyzed by Guru and Chen [29].
One may compare the x =0 line in [29, Figs. 7-11]. An
overall similar behavior is seen, including a dip of about
—4 dB toward the edge at plane 1. However, since we use
a somewhat smaller number of samples to analyze a square
of an area three times electrically larger, the smoothing
effect described in Section II manifests itself by the ab-
sence of the singular behavior at the edge itself. The
omission of the cross-polarized components, on the other
hand, seems to have little effect on the results.

VI

The data-handling capability of SIT well exceeds that of
the matrix methods. This advantage is mostly useful in the
much-needed intermediate frequency range, including the

CONCLUSIONS

ABSORSED POWER 3O fe |2/|E'"°|2 , mmho

Fig. 7 Power deposition in a muscle box, modeled by two planes with
dimensions 2g X2a, spaced 0.125a apart (one quadrant of each plane
is shown). f = 915 MHz, ¢ = 31.3 cm.

ISM frequencies 915 and 2450 MHz. Higher frequencies
may not be handled efficiently by SIT owing to conver-
gence problems. Experience with the conducting scatterer
has also strongly indicated the usefulness of SIT for the
intermediate frequency range. The method is expected to
be developed further and to find new applications (see also

[23]).
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