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Abstract — Conventional numerical methods for arrafyzing power deposi-

tion in biological media have been restricted to bodies which are relatively

smafl electrically. A new, stacked-two-rfimensional-spectraf-iterative-tech-

nique (SIT), presented below, does not involve the generation and hlver-

sion of a matrix and is capable of analyzing larger bodies. It is based on

modeling the body by a set of planar parallel slabs and utilizing the simple

(convolution-type) relationship between a current distribution on any slab

and the field due to this current. This invertible relationship is conveniently

formulated in the transform domain in a strictly algebraic fashion. The

interactions between the various slabs are afso simple and afgebraic in the

spectral domain. The solution is generated in an iterative manner by

applying these relationships sequentially over the slabs until convergence is
achieved. Discussion on convergence and numerical examples are given.

I. INTRODUCTION

I NTEREST IN HYPERTHERMIA, or electromagnetic

heating of deep-seated tumors [1]–[3], and in the assess-

ment of possible health hazards produced by EM radiation

have prompted the development of analytical and numeri-

cal techniques for evaluating the electromagnetic power

deposition in the interior of biological media. To date,

conventional approaches to theoretical electromagnetic

dosimetry [4] have involved the use of numerical matrix

methods [5]–[14] for the low-frequency range. These meth-

ods are limited to the frequency region below 600 MHz.

Beyond this frequency, the cost of generating, storing, and

inverting a large matrix becomes prohibitively large. For

the higher frequency range, analytical analysis has been

used for certain separable geometries, such as planar (e.g.,

[15]), spherical [16], [17], cylindrical [18], and prolate
spheroidal [19]. Farther on the frequency scale, the geomet-

rical-optics approximation has been utilized [18], [20].

However, no systematic numerical approach has been
available beyond the low-frequency range. The need for a

method that is capable of handling, for example, the im-

portant ISM frequencies of 915 or 2450 MHz, has long

been recognized.

Manuscript received September 15, 1982; revised June 15, 1983. The
work reported in this paper was supported in part by the Office of Navat
Research Grant NOO014-81-K-0245 and, in part, by the Nationat Science
Foundation under Grant NSF ECS-8120305.

A. R. Kastner is with RAFAEL, P.O. Box 2250/87, Haifa 31021,
Israel.

R. Mittra is with the Electrical Engineering Department, University of
Illinois, Urbana, IL 61801.

This paper presents a new method, viz., the

stacked-two-dimensional-spectral-iterative-tecbique (SIT),

which is unrelated to the approaches mentioned above. It is

based on the two-dimensional Fourier transform technique

and has been applied previously to electromagnetic scatter-

ing from arbitrary, metallic, or dielectric bodies. The

method takes advantage of the simplicity with which the

relationship between planar sources and fields is expressed

in the spectral domain. When the field is evaluated on a

plane next to a thin planar current distribution lying, say,

in the x – y plane, the integral relating the current to the

field is a convolution between the current and the Green’s

function. Hence, the relationship between the spectral cur-

rent and the spectral field involves an algebraic multiplica-

tion of the current by the spectral Green’s dyad. That is, in

the spectral domain, we write

(1)

The quantities dX and kY in (1) are the Fourier transform

variables introduced as follows:

Z(~x,~y)‘Jw &(s, y,O)eJ(k’-y+k~~)~x~y. (2)
—m

One very efficient approach for solving the class of

planar problems is the spectral-iteration technique [24]-

[26] which involves no matrix inversion, and is related to

Bojarski’s 3-D k-space method [27] (for a detailed compari-

son, see [23]). Tlhis technique can be extended to include

dielectric planar bodies (see Section H below). It then

serves as a building block for the arbitrary scattering

problem that can be formulated by modeling the current

distribution by a set of parallel planar current distributions

(see Fig. 1). This stacked 2-D modeling makes it possible to

extend the capabilities of the spectral-domain approach to

arbitrarily shaped, perfectly conducting, or (lossy) dielec-

tric scatterers. The stacked spectral iteration technique

repeatedly applies the two-dimensional Fourier transform

algorithm to the set of planar distributions and generates

the solution to the original three-dimensional problem in

an’ iterative manner. A unique feature of the SIT is that it

reuses the storage allocated for a single plane over and over

0018 -9480/83/1100-0898$01 .00 01983 IEEE



KASTNER AND MITTRA : TwO-DIMENSIONAL SPECTRAL ITERATIVE TECHNIQUE 899

t

J, J,

4
A

Fig. 1.

J... . . J.
—z. . . .

I
Planar current samples on a two-dimensional scatterer,

I

& 1-Z
Fig. 2. The isolated plate.

again as it performs the computation at other planes. This

eases the burden on storage requirements considerably.

Computational efficiency and low storage requirements

make the spectral-iteration method capable of handling a

rather large number of unknowns, on the order of 2000 or

more, far beyond the reach of the matrix methods. This

feature of the spectral technique enables one to attack

moderate-to-large size scatterers, which were previously

considered to be unmanageably large and beyond the

scope of the moment method (matrix method) and other

available techniques.

SIT thus provides an alternative to moment methods,

high-frequency asymptotic techniques, and their combina-

tions, especially in the intermediate frequency range where

conventional methods are very limited in scope.

The extension of the procedure developed for planar

conducting [24] to planar dielectric structures is discussed

in Section II. This forms the building block for the SIT for

arbitrary dielectric bodies, given in Section III. Results are

described in Section IV.

II. THE BUILDING BLOCK FOR SIT: THE SINGLE

PLATE

The SIT for general scatterers may be viewed as a

generalization of the two-dimensional scheme [24] for the

single thin plate. (See Fig. 2.) This scheme is now refor-

mulated to accommodate dielectric thin planar slabs as

well, To this end, we use the polarization current

1= j%(%-l)(g +gi”) (3)

as the current source for the free-space wave equation.

Equation (3) serves as the “constitutive relationship”

which plays an analogous role to the boundary condition

in the conducting case. Equation (3) is algebraic in the

spatial domain, whereas (1) is algebraic in th? spectral

domain. An iterative procedure for solving this system of

equations alternates between the two domains by use of the

FFT algorithm. It is depicted graphically in Fig. 3 and in

the following step-by-step outline.

1) Begin with an initial guess <(0)

2) Take the 2-D Fourier transform of ~(o) on the planar

structure to obtain ~ ‘O).

3) Multiply ~(o) by S=.

/

z

•1-1F

u$. —-----~—

\’
❑F

t

Fig. 3. The two-dimensional iterative scheme for a dielectric planar
scatterer.

4) Evaluate ~(o)= F- l[~e.~(0) ], the approximation to

the scattered electric field ~. The accuracy of the solution

can be conveniently checked at this point by verifying the

satisfaction of the constitutive relationship (3) within the

scatterer. This is an important featurq of the method.

5) Update ~ by applying the following constitutive rela-

tionship: Replace ~t wit~n the body, d~r (8 = truncation

operator; it is defined by d = 1 on scatterer and O = O

outside scatterer) by 4( – ~~ ) + .l/jtico( e, – 1), leaving the

field outside the body unchanged.

6) Take the Fourier transform of the updated field.

obtained in Step 5.

7) Multiply the result obtained in Step 6 by ~~ 1. The

result thus obtained is ~(1), which is the transform of the

first iteration of the current.

8) Take the inverse Fourier transform of j(l) obtained in

Step 7 to get the surface current on the body. In other
words, perform the operation 6( F l[j(l) ]). For an exact
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solution, the truncation is redundant, since ~ = 8~, and,

hence, (l(&Z- 1[.!Z[6V]]) = 88<= ~. However, the Fourier

inversion of an nth approximate solution j(”) will not give

rise to a current distribution that is nonzero, except on the

body. This step provides a test for the accuracy and for the

convergence of the approximate solution by comparing the

approximate {(0) with d(fi- 1[~(1) ]).

9) Repeat as necessary using the improved Z(l) obtained

from Step 8 into Step 1 to generate the next higher order

approximation J(2) and continue in this manner until con-

vergence has be~n attained.

The 2-D spectral dyadic Green’s function, ~e, meh-

tioned in steps 3 and 7 above, is defined by

(4=4’) (4)

since, for the isolated plate, only the transversal current

components Jx and JY are present. It is given by

()
2 kxk,

1– + –-
0 k:

kxky

()

2

—— 1– ~
k: o

k:=k:+k2
Y’

(5)

(6)

In practice, the question of selecting an appropriate

sampling rate should be addressed. It has been found (see

[21]) that a low sampling rate results in loss of high-order

mode information, and hence in smoothing of sharp varia-

tions. If such localized errors can be tolerated, a low

sampling rate of A/4 to X/2 (in the medium) may be

employed in order to bring the total number of samples to

manageable levels.

This scheme is extended in the next section to three-di-

mensional bodies, while retaining the two-dimensional

processing for the sake of computational economy and

versatility y.

III. ARBITRARY (LossY) DIELECTRIC BODIES

The approach to handling the general-shaped body is to

sample the induced current on it by a collection of n planar

distributions in free space, as shown in Fig. 1. The single-

plane scheme of Section II can be used to solve the original

problem which is now reduced to that of determining the

two-dimensional currents on n planar surfaces, separated

by a distance A.

The strategy for attacking the reduced problem is as

follows. We employ the basic iterative scheme outlined in

Section II for planar structures to update the individual

planar distributions in a sequential manner, starting with

the first plane and ending up at the last one. We update the

currents in one particular plane by applying a single itera-

tion cycle as in Fig. 3, while regarding the distributions in

the other planes as temporarily known from previous oper-

ations. This sequential processing facilitates the reuse of

z
—

Fig. 4. sliced scatterer with the planes p_ and p+ shown immediately to

the left and right of JP, respectively.

the same storage area for all the linear currents. This

significantly reduces the burden on the computer memory

and cost as compared to the direct solution of a three-di-

mensional problem carried out in one fell swoop. The

iteration process encompassing all the planes is repeated as

many times as necessary until convergence of the entire

current distribution is achieved.

The enforcement of the constitutive relationship (3)

within the body requires the computation of the scattered

field produced by all of the planar-induced current distri-

butions. This is done as follows.

Assume that the plane at which the scattered field is
being evaluated is p+, immediately to the right of the

current slice JP (Fig. 4). It is evident that the sources J1

through JP lie to the left of this plane, while J+ ~ through J.

are on the right of p+. Consider first the left sources,

the fields from which propagate to the right ( + z) direc-

tion; hence, their spectrum has the z-dependence

exp[ – jz(~]. Let us denote this part of the field by

E$;) where the superscript indicates that the currents gener-

ating this field are on the left of the plane of evaluation

jj-)= ~ .A ~ je-j_.(p-l)A
—P+ =e -z (7)

i=l

where ~e has been defined in (4) and (5).

Similarly E:), the aggregate of fields radiated by the
sources on the right of the plane p +, may be written in the

transform domain as

The total transformed field at the plane p+ is then a

superposition of E~;) and E~).

The separate bookkeeping of the two components E(-)

and E(‘) is necessary to facilitate transformation of the

field between planes so that the sequential processing can

be done. Suppose, for example, that the field at the plane

(p+ 1). is desired. Since the region between the planes p+

and p + 1 _ is free space, the following equations are valid:

(9a)

(9b)
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Next, in order to transform the field from the plane certain iteration algorithms. This point is further elaborated

(p+ I)_ to (p+ 1)+, we note that these two adjacent on below.

planes are located on each side of the thin current distribu-

tion ~+ ~. Consequently, we subtract the contribution of JP ‘“ A Good lnitlal ‘Uess

from Et-) and add this contribution to ~(+). This gives Many problems may be solved with an initial guess of

zero currents within the body. However, convergence can
j{;~ ~)+= ~fj~l)_+ ~e.~(P+l#

(lOa) & considerably enhanced if a good approximation for the

g{%)+=~{l~l).- ~ “~ A.
current is used instead. Such an approximation may be

_, (p+l) ‘lob) derived by noting that the high losses in the living tissues

The above equations are consistent with the requirement

that the total field be continuous across the plane.

A typical updating cycle at the plane p is done similarly

to that for the single-plate case, by computing the total

scattered field by the superposition of E(‘) and E ‘+). One

can now take the inverse transform of this scattered field

due to the induced sources and enforce the constitutive

relationship which may be expressed as

make them appear somewhat similar to conducting media.

A physical optics approximation can then be written down,

i.e., <(o) = 2y x ~inc on the illuminated faces of the body,

and ~ = O elsewhere. Such an approximation has proven to

be a good starting point for the iterative procedure. Any ‘

additional information derived, say, from ray optics, may

be useful. However, once the convergence rate becomes

reasonable, the price of a few more iterations may not be

too large compared to the effort involved in developing a

J(x, y) more elaborate initial guess.
(11)~j~)+~~)= ‘~inc + jw,o[e,(x, Y)–l] “

B. Relaxation Factor

We replace the scattered field values inside the body with

those dictated by the constitutive relationship while leaving

the scattered field outside the body unchanged. A Fourier

transform of the updated total field is then taken. We then

note that ~~) is the field produced by currents located to

the right of p +. These currents are assumed to be tempo-

rarily known, hence, ~~) is not changed during this cycle.

~~:), on the other hand, depends on J1 through ~P and is
updated. This is accomplished as follo&:

(12)

The current ~P itself is next updated using a relationship

analogous to Step 7 in the single plate case above

(13)

~(’) in the above equation is the contribution of the
—P -

currents .II through <p_ ~ which are also assumed to be

temporarily known from the previous cycle.

The process of updating the current on plane p is now

complete. We transform the updated field to plane p + 1 by

using (9a) and (lOa), and repeat the entire process for that

plane. We then continue in this manner until the entire

body has been scanned once. This constitutes one iteration

step. The entire scanning process is then repeated until

convergence is” achieved and the results of the constitutive

relationship test have been found to be satisfactory.

IV. CONVERGENCE ENHANCEMENT

It has been found that often the values of currents and

fields tend to oscillate about the final value, and sometimes

even diverge after a number of iterations. A remedy for

smoothing the oscillations is to average the new, updated

value of the current with the previous approximation. A

relaxation factor a is defined as the amount by which the

new current is weighted, relative to the previous one. That

is, rather than using J(”), one takes a~(”) +(1 – a)J(”– 1, as

the updated version ~f the current. Relaxation fac~ors of as

low as 20 percent or, sometimes, 10 percent maybe needed.

C. Modified Scanning

The procedure described in the preceding section in-

volves the updating of planar currents in a sequential

manner, where a single updating cycle is performed for

each plane in turn. This method of scanning the planes

may be modified so that repeated updating of a single

plane, or of a group of adjacent planes, may ease conver-

gence problems. This is due to the fact that the inaccu-

racies in the iterated current values tend to generate large

amounts of noise as the fields are propagated over many

planes and when many high-order harmonics are used.

This is especially significant for the back planes, where the

fields are usually low, owing to the high attenuation in the

lossy tissue, The contribution of these planes may become

unproportionally large, as may be manifested by a very

distorted E(‘) at the front planes. Hence, keeping the

values of E(‘) temporarily constant while the front planes

are being processed may slow down the noise-generating

mechanism.

Numerical experiments with the procedure described

above indicate that convergence is affected by the size of D. Scaling Factor

the body, or by the total number of sampling points. It has been found that often the main difference between

Convergence becomes difficult when the number is of the the approximate current derived after a few iterations and

order of one thousand or more. However, it is possible to the exact solution is a complex factor. One can partly

improve the convergence, even for the otherwise divergent compensate for this difference by multiplying the current

cases, which can often be made to converge by using at the plane p at every iteration by the variational factor X,
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Fig. 5a. Comparison of SIT results with the exact solution for a layered

tissue structure at 915 MHz.

where

(g),<)

‘= Q;”), LJ$))
(14)

and <is the total incident field on plane p

y=g$:)+g:J+Ei”’. (15)—

L is the operator defined so that (1) and (3) cart be

integrated into the form L~ = ~

(16)

The scaling factor X is defined in a similar fashion to the

one used in [25] and [26], except here the incident field on

the plane, ~, is not completely known as before, but rather

assumed temporarily known, being the outcome of both

the incident field and the currents on other planes which

are assumed known as long as plane p is being processed.

The scaling factor has proved very useful in improving

convergence in difficult cases.

V. I@3ULTS

A. Layered Medium

The simple case of two infinite planar layers, one of

which is constituted of fat and the other of muscle, has

been used for an initial check on the capabilities of the

SIT. For this case, the solution is known. Figs. 5(a) and (b)

show the results for the ISM frequencies of 915 and 2450

MHz, respectively, compared to an exact solution derived

by plane-wave multiple reflection analysis. The electrical

properties of fat and muscle at the relevant frequencies

have been taken from [28]. It should be emphasized that

.
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Fig. 5b. Comparison of SIT results with the exact solution for a layered

tissue structure at 2450 Mllz.

the SIT scheme treats the structure from a general point of

view and does not take advantage of this specific shape.

Note that the field in the muscle layer is much weaker than

the one in the fat. The small inaccuracies in the field values

within the muscle become more pronounced as the power

is computed, owing to the much larger conductivity in the

muscle.

B. Cylindrical Structures

When the structure lacks variation in one transversal

direction, e.g., 6’/8x = O, i.e., kX = O, and the incident

electric field is polarized along that direction, the problem

reduces to a scalar one where EX or JX are related by the

scalar Green’s function

(17)

In analogy to the three-dimensional case, the two-dimen-

sional problem is now analyzed by a stack of one-dimen-

sional distributions on the cylindrical cross section. This

formulation is considerably more economical than the

three-dimensional one; hence, it may be useful for struc-

tures that are long and approximately uniform, particularly

in regions away from the edges.

The generality and versatility of the SIT is demonstrated

by the problem treated in Fig. 6, where a cylinder consist-

ing of muscle is subjected to plane-wave illumination. An

equivalent solution by matrix method would have required

an inversion of a matrix of about 600 x 600.
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Fig. 6. Power deposition in a cross section of a cylindrical muscle
structure with dimensions 62.6 cm X 62.6 cm at 915 MHz, The incident

electric field is x-polarized.

C. Three-Dimensional Case

Finally, a complete 3-D structure has been analyzed, as

shown in Fig. 7, where a thin-muscle box, modeled by two

planes, is illuminated by an x-polarized plane wave propa-

gating perpendicularly to the planes. Since for any given

incident field all three components of the current may be

present, the problem is even more complicated. In order to

simplify the solution, cross-polarization effects have been

neglected, i.e., for an incident field polarized along the

x-direction, the only current component assumed to be

present is JX. The scalar Green’s function is the ~e,, of (5).

A similar structure was analyzed by Guru and Chen [29].

One may compare the x = O line in [29, Figs. 7-11]. An

overall similar behavior is seen, including a dip of about

– 4 dB toward the edge at plane 1. However, since we use

a somewhat smaller number of samples to analyze a square

of an area three times electrically larger, the smoothing

effect described in Section II manifests itself by the ab-

sence of the singular behavior at the edge itself. The

omission of the cross-polarized components, on the other

hand, seems to have little effect on the results.

VI. CONCLUSIONS

The data-handling capability of SIT well exceeds that of

the matrix methods. This advantage is mostly useful in the

much-needed intermediate frequency range, including the

!i’”2“ 3:’ ‘“ 12” i“”’0“ 0:’ 0’7 1°”
I/4004:, 6,5 .4,3 5,““111 i~’”0’20’( 0“ 2’0

--+ “’”-=*”=?-=-T-g-=”=-&-’
ABSORBEDPOWER+UlE12/lE’nc12 rnrnho

Fig. 7 Power deposition in a muscle box, modeled by two planes with

dimensions 2a X 2u, spaced 0.125a apart (one quadrant of each plane
is shown). ~= 915 MHz, a = 31.3 cm.

ISM frequencies 915 and 2450 MHz. Higher frequencies

may not be handled efficiently by SIT owing to conver-

gence problems. Experience with the conducting scatterer

has also strongly indicated the usefulness of SIT for the

intermediate frequency range. The method is expected to

be developed further and to find new applications (see also

[23]).
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